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The distribution of plasma fluxes to material surfaces is a key issue for fusion devices because it controls peak

heat loads and determines hydrogenic and impurity particle sources via recycling and sputtering.  The typical

modeling approach for tokamaks has been to simulate the scrape-off layer (SOL) plasma with 2D transport codes

that assume enhanced turbulence-induced transport across the magnetic field to fit experimental profiles.  Plasma

turbulence simulations for fixed profiles [e.g., Ref. 1] show that turbulent fluxes of the required magnitude arise

from instabilities driven by the radial plasma gradients.  However, because the profiles and turbulence are

strongly coupled, being able to predict the plasma fluxes in future devices such as ITER requires coupling of

simulations for turbulence and profile evolution.  The approach reported here is coupling the BOUT 3D

turbulence code  [1] with the UEDGE 2D transport code [2].  Initial coupling of only the hydrogen density

variable for fixed temperature profiles is presented in Ref. 3.  Here the coupling is extended to the electron and

ion temperatures and the parallel velocity.  Neutrals are treated self-consistently via a full flux-limited fluid

model.   Because the characteristic time scales of the turbulence is short (~10-6 sec) and the profile evolution time

scale can be long (~10-2 – 10-1 sec owing to recycling), an iterative scheme [4] is used that relaxes the turbulent

fluxes passed from BOUT to UEDGE and the profiles from UEDGE to BOUT over many coupling steps.  Each

code is run on its own characteristic time scale, yielding a statistically averaged steady state.  Since the turbulent

fluxes are coupled directly to UEDGE with no assumption of small-amplitude diffusive transport, and the effect

of strong, intermittent transport events are included.  Results show that strong convective transport can arise in

the far SOL for L-mode-like discharges, giving significant wall recycling.  Comparisons are made between

particle and energy fluxes to the main chamber walls and to the divertor plates for different conditions.  The

model is unique in its self-consistent treatment of turbulence and transport on both sides of the magnetic

separatrix; thus, the model simulates the generation of the turbulence, its propagation to the wall, the resulting

neutral influx, and profile modifications.
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